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Optimize for proxies 
such as engagement 

By optimizing for measurable proxies, are recommendation systems at 
risk of significantly under-delivering on utility?

How can we optimize for utility despite not being able to measure it?
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Engagement optimization may lead to 
recommending only popular items, 
a.k.a, “popularity bias”
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always recommend the popular type

exploration-driven heuristic
recommends a diverse set of items

significant 
improvement 
in utility

minimal loss in 
engagement

Utility optimization requires 
recommending a diverse set of options 
a.k.a “forced exploration”
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Given the ability to recommend multiple items, one can optimize for utility without directly 
measuring it, and without incurring substantial reduction in engagement
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• Identify and formalize misalignment  engagement and utility maximization
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