The Multisecretary Problem with many types

Omar Besbes, Yash Kanoria, Akshit Kumar

Columbia Business School

Problem Introduction ••••					
» Multi-se	ecretary Pr	roblem			

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Problem Introduction ●○○				
NA 112	1.1			

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

* The secretaries arrive in an online fashion.

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [1/20]

Problem Introduction				
N. 112	1.1			

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** hire or reject decisions.

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [1/20]

Problem Introduction				
A.4. 112	1.1			

» Multi-secretary Problem

Problem Statement

Given a sequence of *T* secretaries and a hiring budget *B*, a decision maker (DM) wants to hire the top *B* secretaries in terms of their ability.

Details and Assumptions

- * The secretaries arrive in an online fashion.
- * The DM makes **irrevocable** *hire* or *reject* decisions.
- * The abilities (types) of the secretaries are drawn **independently** from a **common** and **known** distribution *F* over [0, 1].

000				
C 11				

» Gotta catch'em all some

Problem Introduction					
» Gotta ca	tch'em all	some			

Problem Introduction				
C 11				

» Gotta catch'em all some

000					
» Gotta ca	atch'em all	some			

000				

» Gotta catch'em all some

Problem Introduction ○●○					
» Gotta d	atch'em all	some			
	 Image: A start of the start of	×			

0.7

0.5

Problem Introduction ○●○					
» Gotta ca	atch'em all	some			

Problem Introduction ○●○						
» Gotta c	atch'em all	some				
	~	×	~			
	0.7	0.5	0.9			
DM	t = 1	t=2	t = 3	<u> </u>	 	

Problem Introduction ○●○						
» Gotta d	atch'em all	some				
	~	×	~			
	0.7	0.5	0.9			
	, 🍯					
DM	t = 1	t=2	t=3		 	

roblem Introduction							
» Gotta c	atch'em all	some					
	\checkmark	×	~				
	0.7	0.5	0.9	0.8			
				٥٥			
DM	t = 1	$\frac{1}{t=2}$	$\frac{1}{t=3}$	t = 4	I]	

roblem Introduction						
» Gotta d	atch'em all	some				
	V	×	~	×		
	0.7	0.5	0.9	0.8		
	, 👸			٥٥		
DM	t = 1	$\frac{1}{t=2}$	t=3	t = 4		

oblem Introduction							
» Gotta c	atch'em all	some					
	V	×	V	×			
	0.7	0.5	0.9	0.8	0.3		
	, 👸			٥٥			
DM	t = 1	$\frac{1}{t=2}$	$\frac{1}{t=3}$	$\frac{1}{t=4}$	t=5]	

oblem Introduction ● ○							
» Gotta ca	atch'em all :	some					
	V	×	V	×	×		
	0.7	0.5	0.9	0.8	0.3		
				٥٥			
DM	t = 1	$\frac{1}{t=2}$	$\frac{1}{t=3}$	$\frac{1}{t=4}$	$\frac{1}{t=5}$]	

oblem Introduction								
» Gotta c	atch'em all s	some						
	\checkmark	×	~	×	×			
	0.7	0.5	0.9	0.8	0.3	0.6		
	, 🎒			٥٥		~~		
DM	t = 1	$\frac{1}{t=2}$	t = 3	t=4	$\frac{1}{t=5}$	t = 6]	

oblem Introduction ●○							
» Gotta c	atch'em all	some					
	~	×	~	×	×	~	
	0.7	0.5	0.9	0.8	0.3	0.6	
				٥٥	6	~	
DM	t = 1	$\frac{1}{t=2}$	t = 3	$\frac{1}{t=4}$	$\frac{1}{t=5}$	t = 6	

oblem Introduction ●○								
» Gotta c	atch'em all	some						
	~	×	~	×	×	~		
	0.7	0.5	0.9	0.8	0.3	0.6		
				٥٥	6	~~~		
DM	t = 1	$\frac{1}{t=2}$	t = 3	$\frac{1}{t=4}$	$\frac{1}{t=5}$	$\frac{1}{t=6}$]	

blem Introduction ● ○							
» Gotta d	atch'em all s	some					
	V	×	V	×	×	~	
	0.7	0.5	0.9	0.8	0.3	0.6	1.0
	, 👸					~	
DM	t = 1	$\frac{1}{t=2}$	t=3	$\frac{1}{t=4}$	$\frac{1}{t=5}$	t = 6	t = 7

blem Introduction ● ○							
» Gotta d	atch'em all s	some					
	V	×	V	×	×	~	×
	0.7	0.5	0.9	0.8	0.3	0.6	1.0
	, 👶			٥٥		~	
DM	t = 1	$\frac{1}{t=2}$	$\frac{1}{t=3}$	t=4	t=5	t = 6	t = 7

Online Policy

oblem Introduction ●○								
» Gotta c	atch'em all s	some						
	V	×	~	×	×	~	×	
	0.7	0.5	0.9	0.8	0.3	0.6	1.0	
				٥٥				
DM	t = 1	$\frac{1}{t=2}$	t=3	$\frac{1}{t=4}$	t=5	$\frac{1}{t=6}$	t = 7	
		60						
		Offline Poli	су		Onlin	e Policy		

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [2/20]

Problem Introduction					
» Gotta ca	atch'em all	some			

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [3/20]

Problem Introduction Applications Literature Review Continuous Distribution

is Distributions

aps in distribution F

Failure of CE

Conclusion

- » Motivation and Related Applications
 - * Online Knapsack Problem [Kleywegt and Papastavrou, 1998]
 - * Unit weights and *i.i.d* rewards

Problem Introduction

Continuous Dis

ibutions 0

Failure of CE

Conclusion

- » Motivation and Related Applications
 - * Online Knapsack Problem [Kleywegt and Papastavrou, 1998]
 - * Unit weights and *i.i.d* rewards
 - * Single-leg Revenue Management [Talluri et al., 2004]
 - * Selling horizon *T*, flight capacity *B* and types are different fare classes.

Problem Introduction

Literature

Continuous C

utions Ga

Failure of CE

Conclusion

- » Motivation and Related Applications
 - * Online Knapsack Problem [Kleywegt and Papastavrou, 1998]
 - * Unit weights and *i.i.d* rewards
 - single-leg Revenue Management [Talluri et al., 2004]
 - Selling horizon *T*, flight capacity *B* and types are different fare classes.
 - * Order Fulfillment Problem [Lei et al., 2018]

» Motivation and Related Applications

- * Online Knapsack Problem [Kleywegt and Papastavrou, 1998]
 - * Unit weights and *i.i.d* rewards
- * Single-leg Revenue Management [Talluri et al., 2004]
 - Selling horizon T, flight capacity B and types are different fare classes.
- * Order Fulfillment Problem [Lei et al., 2018]

Spatially distributed demand 2 WHs with total inventory *T* Unit demand at each time Fulfill from one of the WHs Inventory depletes by 1 min total matching cost

Reduces to multi-secretary problem

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [4/20]

	•0			

	•0			

	•0			

	•0			

	•0			

Continuous Distributions "Many Types" \uparrow \uparrow \uparrow \downarrow \downarrow Regret = $\Theta(\log T)$ [Bray, 2022], [Lueker, 1998]

Continuous Distributions "Many Types" Regret = $\Theta(\log T)$ [Bray, 2022], [Lueker, 1998] Need density to be bounded below

» Punchline and Overview

Rarity of types / Shape of the density (β)

» Punchline and Overview

Drivers of Regret

Rarity of types / Shape of the density (β)

Rarity of types / Shape of the density (β)

» Punchline and Overview

Rarity of types / Shape of the density (β)

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [6/20]

» Punchline and Overview

- Shape is a fundamental driver of regret
- Dealing with gaps is an algorithmic challenge.
- New principle: Conservatism wrt gaps
- * If close to the gap, use the gap.

Rarity of types / Shape of the density (β)

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [6/20]

» First step towards unified approach

- * Consider a continuous distribution with finite many points at which the density is zero.
- * β characterizes the rate of mass accumulation around the points of zero density.
- * Consider *m* such that f(m) = 0, then *F* is $(\beta, 1)$ -clustered if

$$|F(m \pm \delta) - F(m)| \ge \delta^{\beta+1}$$

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [8/20]

		Continuous Distributions		
(-)	 			

» $(m{eta}, 1)$ -clustered distributions

Universal Lower Bound

For every $eta\in[0,\infty)$, there exists a distribution F_eta such that

$$\sup_{B \in [T]} \mathbb{E}_{F_{\beta}} \left[\mathsf{Regret} \right] = \begin{cases} \Omega \left(\log T \right), & \beta = 0, \\ \Omega \left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [9/20]

	Continuous Distributions		

» (eta,1)-clustered distributions

Universal Lower Bound

For every $eta\in[0,\infty)$, there exists a distribution F_eta such that

$$\sup_{B \in [T]} \mathbb{E}_{F_{\beta}} \left[\mathsf{Regret} \right] = \begin{cases} \Omega \left(\log T \right), & \beta = 0, \\ \Omega \left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}} \right), & \beta > 0. \end{cases}$$

Regret of Certainty Equivalent

If *F* is a $(\beta, 1)$ -clustered distribution, then for all $B \in [T]$,

$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \begin{cases} \mathcal{O}\left(\log T\right), & \beta = 0, \\ \mathcal{O}\left(T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0. \end{cases}$$

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [9/20]

oblem IntroductionApplicationsLiterature00000

» Certainty Equivalent Control

Continuous Distributions

For $(m{eta}, 1)$ -continuous distributions

- * Let B_t be the remaining budget at time t
- * Compute the budget ratio $br_t = \frac{\text{Remaining Budget}}{\text{Remaining Time}} = \frac{B_t}{T-t}$
- * Define a quantile threshold $p_t^{ce} = 1 br_t$
- * Define a ability threshold $\gamma_t^{ce} = \mathit{F}^{-1}(\mathit{p}_t^{ce})$
- * hire \iff $heta_t \geq \gamma_t^{ce}$

			Continuous Distributions			
$\gg (eta,1)$	-clustered	l distributions			Brief Sum	Imar

- * Relax the assumption of density being positively lower bounded for continuous distribution.
- * The lower bound along with the upper bound show that β (shape of the density) is a fundamental driver of regret.
- * Entire spectrum of regret scaling is possible: $\Theta(\log T)$ or $\Theta(T^{\alpha})$ where $\alpha \in (0, \frac{1}{2})$.
- * A simple heuristic like CE is optimal.

		000		

» Gaps in the distribution

» Gaps in the distribution

» Gaps in the distribution

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22- [12/20]

				Gaps in distribution		
» $(eta, \epsilon$	$(\mathbf{c_0})$ -cluster	ed distributio	J		Exar	nples

 $f(\theta)_{\uparrow}$

				Gaps in distribution ○●○		
» ($eta,arepsilon$	o)-cluster	ed distributio	٦		Exar	nples

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $f(\theta)_{\uparrow}$

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $f(\theta)_{\uparrow}$

00

Examples

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

Examples

 $\text{Gap} \equiv \text{intervals}$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$

xamoles

 $Gap \equiv intervals$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 0$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta$ on the same mass cluster

 μ (mass clusters) $\geq \varepsilon_0$

For discrete distrbutions, $\beta = 0$, $\varepsilon_0 = \min_j p_j$

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22 · [13/20]

θ

mass clusters 1

gap

0 mass clusters

 $f(\theta)_{\uparrow}$

 $Gap \equiv intervals$ of positive length with zero mass

mass cluster \equiv interval with positive mass

 $\beta = 1$ (mass accumulation around gaps)

 $|F(m + \delta) - F(m)| \ge \delta^2$ on the same mass cluster

 $\mu(\text{mass clusters}) \geq \varepsilon_0$

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22 · [14/20]

roblem Introduction Applications Literature Review

» Certainty Equivalent Control

Continuous Distributions

n distribution Failure of LE CwG

For Bi-modal Uniform Distribution

Let B_t be the remaining budget at time t

$$\mathsf{Budget}\ \mathsf{Ratio} = rac{\mathsf{Remaining}\ \mathsf{Budget}}{\mathsf{Remaining}\ \mathsf{Time}} = rac{B_t}{T-t}$$

CE Quantile Threshold
$$= 1 - \frac{B_t}{T-t} \triangleq p_t^{ce}$$

Decision: hire $\iff \theta_t \ge F^{-1}(p_t^{ce})$

n Introduction Applications

Literature

Continuous Distribution

Gaps in distribution

Failure of CE ○● Conclusio

» Failure of Certainty Equivalent Control

Regret Lower Bound

Insufficiency of Certainty Equivalent Control

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

Omar Besbes, Yash Kanoria, **Akshit Kumar** (Columbia Business School) · Multi-secretary Problem INFORMS'22· [16/20]

» Failure of Certainty Equivalent Control

Regret Lower Bound

Insufficiency of Certainty Equivalent Control

Assume that $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, for B = T/2, we have

 $\mathbb{E}\left[\mathsf{Regret}(\mathsf{CE})\right] = \Omega\left(\sqrt{\mathsf{T}}\right)$

Remark

* Same scaling is achievable under a static threshold policy.

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22· [16/20]
			•0

Algorithmic Idea

			CwG • •	

Algorithmic Idea

			•0	

Algorithmic Idea

Algorithmic Idea

If far from a gap, use the CE threshold

			•0	

Algorithmic Idea

If far from a gap, use the CE threshold

Algorithmic Idea

If far from a gap, use the CE threshold

Algorithmic Idea

If far from a gap, use the CE threshold If close to gap, use the gap as threshold

Algorithmic Idea

If far from a gap, use the CE threshold If close to gap, use the gap as threshold

Omar Besbes, Yash Kanoria, Akshit Kumar (Columbia Business School) · Multi-secretary Problem INFORMS'22- [17/20]

				CwG O •	
auntice wit	h cocooct to	2200		D	L P

Regret of CwG Policy

If F is a (β, ε_0) -clustered distribution, then

$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{CwG})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$

If *F* is a discrete distribution, $\mathbb{E}[\text{Regret}(CwG)] = O(1/\varepsilon_0)$

						0 •	
		L P					

Regret of CwG Policy

If F is a (β, ε_0) -clustered distribution, then

$$\mathbb{E}\left[\mathsf{Regret}(\mathsf{CwG})\right] = \begin{cases} \mathcal{O}\left((\log T)^2\right), & \beta = 0, \\ \mathcal{O}\left(\mathsf{poly}(\log T)T^{\frac{1}{2} - \frac{1}{2(1+\beta)}}\right), & \beta > 0 \end{cases}$$

If *F* is a discrete distribution, $\mathbb{E} [\text{Regret}(CwG)] = O(1/\varepsilon_0)$

Remark

- * $F = \text{Unif}([0, \frac{1}{4}] \cup [\frac{3}{4}, 1])$, CwG ($\mathcal{O}((\log T)^2)$) outperforms CE ($\Omega(\sqrt{T})$).
- $\ast\,$ Matches the universal lower bound upto polylog factors $\,\Rightarrow\,$ CwG is near-optimal.

Omar Besbes, Yash Kanoria, **Akshit Kumar** (Columbia Business School) · Multi-secretary Problem INFORMS'22 · [18/20]

				Conclusion • • • •
» Conclusio	ОП			

* *Motivation:* Discrete dist. and continuous dist. with bounded density are well studied but require different algorithmic ideas.

				Conclusion • • • •
» Conclusio	nc			

- * *Motivation:* Discrete dist. and continuous dist. with bounded density are well studied but require different algorithmic ideas.
- * Research Ques: How to unify and interpolate between them?

- * *Motivation:* Discrete dist. and continuous dist. with bounded density are well studied but require different algorithmic ideas.
- * *Research Ques:* How to unify and interpolate between them?
- * Challenges: Unified approach requires dealing with two potential drivers:
 - * Rarity of types around points of zero density (β): fundamental driver
 - * Presence of gaps: avoidable losses but need smarter algorithms

- * *Motivation:* Discrete dist. and continuous dist. with bounded density are well studied but require different algorithmic ideas.
- * *Research Ques:* How to unify and interpolate between them?
- * Challenges: Unified approach requires dealing with two potential drivers:
 - * Rarity of types around points of zero density (β): fundamental driver
 - * Presence of gaps: avoidable losses but need smarter algorithms
- * Algorithmic Innovation: Conservatism with respect to gaps can deal with a broader class of distributions.
 - * Recover the guarantees for discrete and bounded continuous distributions.

				Conclusion
» Open Pro	oblems			

* The multi-secretary problem is NRM for d = 1, how can we generalize these ideas to higher dimensions?

				Conclusion
» Open Pr	oblems			

- * The multi-secretary problem is NRM for d = 1, how can we generalize these ideas to higher dimensions?
- * How to think of gaps in higher dimensions and how to deal with them?

				Conclusion OOO
» Open Pr	oblems			

- * The multi-secretary problem is NRM for d = 1, how can we generalize these ideas to higher dimensions?
- * How to think of gaps in higher dimensions and how to deal with them?
- * Extensions of NRM problems to instances with gaps.

				Conclusion
» Open Pro	oblems			

- * The multi-secretary problem is NRM for d = 1, how can we generalize these ideas to higher dimensions?
- * How to think of gaps in higher dimensions and how to deal with them?
- * Extensions of NRM problems to instances with gaps.
 - * Application: Order fulfillment problem with more than 2 warehouses.
 - * Gaps in spatial demand distributions in practical settings.

Thank you!

» References

- Arlotto, A. and Gurvich, I. (2019). Uniformly bounded regret in the multisecretary problem. Stochastic Systems, 9(3):231–260.
- Bray, R. L. (2022). The multisecretary problem with continuous valuations. arXiv preprint arXiv:1912.08917.
- Kleywegt, A. J. and Papastavrou, J. D. (1998). The dynamic and stochastic knapsack problem. Operations research, 46(1):17–35.
- Lei, Y., Jasin, S., and Sinha, A. (2018). Joint dynamic pricing and order fulfillment for e-commerce retailers. Manufacturing & Service Operations Management, 20(2):269–284.

Lueker, G. S. (1998). Average-case analysises off off time and the basis of the line hapsack of the problem INFORMS'22-[21/20]