Impact of Ranking & Personalized Recommendations in Marketplaces

Omar Besbes Yash Kanoria Akshit Kumar Columbia Business School

Yale CADMY

Personalized Recos

Public Rankings

What is the added value of personalization?

What is the added value of personalization?

What is the added value of personalization?

Public Rankings

Personalized Recos

Limited Supply

Unlimited Supply

What is the added value of personalization?

Personalized Recos

What is the role of capacity constraints?

Limited Supply

Unlimited Supply

Research Problem

How much value do different information provisioning tools – public rankings & personalized recommendations - provide with & without supply side constraints?

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recommendations: Help discover agent-item specific adjustments

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recommendations: Help discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recommendations: Help discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recommendations: Help discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recommendations: Help discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

Leveling the Playing Field for High School Choice: Results from a Field Experiment of Informational Interventions

Sean P. Corcoran, Jennifer L. Jennings, Sarah R. Cohodes & Carolyn Sattin-Bajaj

.... Our findings also suggest that informational interventions may not reduce inequality, since both disadvantaged and comparatively advantaged students used our materials

• n agents and n items

agents

items

- *n* agents and *n* items
- Agent Utility

$$U(a,i) = (1-\rho) \cdot q(i) + \rho \cdot \varphi(a,i)$$

agents

items

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = (1-\rho) \cdot q(i) + \rho \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item

q(1)

q(2)

q(3)

q(4)

agents

items

- n agents and n items
- Agent Utility
 - $U(a,i) = (1-\rho) \cdot q(i) + \rho \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - $\varphi(a,i)$: Idiosyncratic term depends on the agent-item pair

- n agents and n items
- Agent Utility
 - $U(a,i) = (1-\rho) \cdot q(i) + \rho \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - $\varphi(a,i)$: Idiosyncratic term depends on the agent-item pair
 - ρ : level of heterogeneity in utility

- n agents and n items
- Agent Utility
 - $U(a,i) = (1-\rho) \cdot q(i) + \rho \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - $\varphi(a,i)$: Idiosyncratic term depends on the agent-item pair
 - ρ : level of heterogeneity in utility
- Assumptions
 - q and ϕ are independent of each other
 - q(i) drawn i.i.d from P_q
 - $\varphi(a,i)$ drawn i.i.d from P_{φ}

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items

agents

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

Model

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

No Information

 $U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i)$

Agents choose items randomly

No Information

$$U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i)$$

Agents choose items randomly

No Information Partial Information

$$U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i) \quad U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i)$$

Agents choose items randomly

Agents choose items randomly

Agents choose items based solely on the common term

No Information Partial Information

$$U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i) \quad U = (1 - \rho) \cdot q(i) + \rho \cdot \varphi(a, i)$$
Public
Rankings

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution $\overline{F_q}$ and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{ω} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

•
$$\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$$

•
$$\Delta_{q \to u}^{\text{cap}} \simeq c \rho \cdot n^{1/\alpha}$$

$$\Delta_{\emptyset \to q}^{\mathrm{uncap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$$

$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c(((1-\rho)^{\alpha} + \rho^{\alpha})^{\frac{1}{\alpha}} - (1-\rho)) \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution $\overline{F_q}$ and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

•
$$\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$$

• $\Delta_{a \to u}^{\text{cap}} \simeq c\rho \cdot n^{1/\alpha}$

$$\Delta_{\emptyset \to q}^{\mathrm{uncap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$$

$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c(\left((1-\rho)^{\alpha} + \rho^{\alpha}\right)^{\frac{1}{\alpha}} - (1-\rho)) \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

•
$$\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$$

 $\Delta_{a\to u}^{\operatorname{cap}} \simeq c\rho \cdot n^{1/\alpha}$

•
$$\Delta_{\emptyset \to q}^{\mathrm{uncap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$$

$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c(((1-\rho)^{\alpha} + \rho^{\alpha})^{\frac{1}{\alpha}} - (1-\rho)) \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x \to \infty} \bar{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{ω} have Pareto tail with parameters (κ, α) . Then we have that

Capacitated Supply Setting

•
$$\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$$

 $\Delta_{q \to u}^{\text{cap}} \simeq c \rho \cdot n^{1/\alpha}$

$$\Delta_{\emptyset \to q}^{\mathrm{uncap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$$

$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c(\left((1-\rho)^{\alpha} + \rho^{\alpha}\right)^{\frac{1}{\alpha}} - (1-\rho)) \cdot n^{1/\alpha}$$

Take-aways

- A stylized model to isolate the impact of rankings and personalized recommendations
- Fundamental interplay between the impact of different information provisioning tools and supply side capacity
 - Uncapacitated Settings: Level of heterogeneity determines the impact of public rankings and personalized recommendations
 - Capacitated Settings: Most of the value lies in matching agents to items that they idiosyncratically value highly.

Thanks

