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g,
12% 28%) 36%

Would change Would change Would change
degree institution field of study

More than half of U.S. adults would change at least one of their education decisions.
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There is no supply-side constraints on these platforms
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in supply constrained settings

One important setting is Centralized College Admissions
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Students take one/multiple Students get a priority order based Students are sequentially invited to
exams on the exam performance choose their college

Students are making these choices with partial information such as rankings

This is also applicable* to online platforms like AirBnB, Upwork, etc.

*the priority order is some random order
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CORE, The Academic Explorer

Course Recommendation Engine

Enter your name: Select your gender:
Male

[N
_, Provide your preference order for colleges

- and courses:

Select College 1:
Select College 2:
Select College 3:

Select College 4:

Recommender Systems for
College Recommendations



Personal Recommendation Tools

Electives Chatbot

This is based on the starter kit with ReactJS + NextJS +
TypeScript. You can download the source code for this Starter
Kit from GitHub.

| am a chat assistant to help you navigate classes
= offered at CBS. How can | help you?

Chatbots for Course
Recommendations
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Preview of Results

* ldentify a fundamental interplay between the value of these
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Corollary (Exponential Tail)
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Summary
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