Impact of Rankings and Personalized Recommendations in Marketplaces

Akshit Kumar Joint work with Omar Besbes and Yash Kanoria

Develop models and methods to optimize platform operations

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

We have ill-formed preferences

We have ill-formed preferences

GALLI	JP [°] Cons	ulting Expertise	Services &	Solutions Lea	arning & Events Ne	ews & Indicators
News	Politics \checkmark	Economy 🗸	World \checkmark	Key Topics \checkmark	Blogs & Opinion \checkmark	Media Resources 🗸
On Second Thought: U.S.						
Adults Reflect on Their						
Education Decisions						

We have ill-formed preferences

ART SCIENCE		ABOUT	EXPERTISE	CLIENTS	TEAM		STUDENTPOLL	NEWS	CONTACT US
	← Back to <i>student</i> POLL								
	NAVIGATING THE		KS: UNI			NG	LLEGE		
	CHOICES	KANK	NG3 IN	RELA		10 00	LLEGE		
_	Volume 16 Issue 3 Septembe	er 2023	-	-	-	-	_	-	_

ART CIENCE GROUP LLC	ABOUT EXPERTISE CLIENTS TEAM INSIGHTS STUDENTPOLL NEWS	CONTACT US Key Findings		
+	- Back to <i>student</i> POLL			
N II C	NAVIGATING THE RANKS: UNDERSTANDING NSTITUTIONAL RANKINGS IN RELATION TO COLLEGE CHOICES	58% of high school seniors who are		
Vo	'olume 16 Issue 3 September 2023	actively considered rankings		

	ABOUT EXPERTISE CLIENTS TEAM INSIGHTS STUDENTPOLL	NEWS CONTACT US
		Key Findings
	← Back to <i>student</i> POLL	
	NAVIGATING THE RANKS: UNDERSTANDING INSTITUTIONAL RANKINGS IN RELATION TO COLLEGE CHOICES	58% of high school seniors who are
	Volume 16 Issue 3 September 2023	investigating colleges have actively considered rankings
Schools master's	ONAL UNIVERSITIES is in the National Universities category offer a full range of undergraduate majors and Ph.D. programs.	ors, plus
	Princeton University = #1 in National Universities Harvard University #3 in National Universities	ies (tie)
Ţ	Massachusetts Institute of Technology #2 in National Universities Stanford University #3 in National Universities	RANKINGS
SEE FUI	LL RANKING LIST »	WORLD

RANKINGS

We use rankings to decide movies

But rankings aren't personalized...

But rankings aren't personalized...

Many platforms (aim to) provide personalized recos to each user

But rankings aren't personalized...

Many platforms (aim to) provide personalized recos to each user

There is no supply-side constraints on these platforms

One important setting is **Centralized College Admissions**

One important setting is **Centralized College Admissions**

Students take one/multiple exams

One important setting is **Centralized College Admissions**

Students take one/multiple exams

Students get a priority order based on the exam performance

One important setting is **Centralized College Admissions**

Students take one/multiple exams Students get a priority order based on the exam performance

Students are *sequentially* invited to **choose** their college

One important setting is **Centralized College Admissions**

Students take one/multiple exams

Students get a priority order based on the exam performance

Students are *sequentially* invited to **choose** their college

Students are making these choices with partial information such as rankings

One important setting is **Centralized College Admissions**

Students take one/multiple exams

Students get a priority order based on the exam performance

Students are *sequentially* invited to **choose** their college

Students are making these choices with **partial information** such as rankings

This is also applicable* to online platforms like AirBnB, Upwork, etc.

*the priority order is some random order

Personal Recommendation Tools

Personal Recommendation Tools

CORE, The Academic Explorer

Course Recommendation Engine

Select your gender:
Male
ence order for colleges
-
-
•

Recommender Systems for College Recommendations
Personal Recommendation Tools

CORE, The Academic Explorer Course Recommendation Engine		Electives Chatbot This is based on the starter kit with ReactJS + NextJS + TypeScript. You can <u>download the source code</u> for this Starter Kit from GitHub.
Enter your name:	Select your gender: Male	Contact Us I am a chat assistant to help you navigate classes offered at CBS. How can I help you?
Provide your preference order for colleges and courses:		Enter your message
Select College 1:	*	k
Select College 2:	•	
Select College 3:	*	
select College 4: Recom	mender Systems for	Chatbots for Course

College Recommendations

Chatbots for Course Recommendations

Research Problem

How much value do different information levers rankings & personalized recommendations provide with & without supply side constraints?

Our solution

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

• *n* agents and *n* items

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = \rho \cdot q(i) + (1-\rho) \cdot \varphi(a,i)$

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = \rho \cdot q(i) + (1-\rho) \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = \rho \cdot q(i) + (1-\rho) \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - φ(a, i): Idiosyncratic term depends on the agent-item pair

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = \rho \cdot q(i) + (1-\rho) \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - φ(a, i): Idiosyncratic term depends on the agent-item pair
 - ρ: level of heterogeneity in utility

- *n* agents and *n* items
- Agent Utility
 - $U(a,i) = \rho \cdot q(i) + (1-\rho) \cdot \varphi(a,i)$
 - q(i): Common term depends only on the item
 - φ(a, i): Idiosyncratic term depends on the agent-item pair
 - ρ: level of heterogeneity in utility
- Assumptions
 - q and ϕ are independent of each other
 - q(i) drawn i.i.d from P_q
 - $\varphi(a, i)$ drawn i.i.d from P_{φ}

	q(1)
φ(a, 2)	q(2)
	q(3)
	q(4)

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items

agents

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

- Sequential selection of items
 - Agents are ordered according to some priority score and have unit demand
 - Agents arrive sequentially and select their preferred item from remaining set of items
- Capacitated Supply Setting
 - Each item has unit capacity
 - One-to-one match between agents & items
- Uncapacitated Supply Setting
 - Each item has infinite capacity
 - Many-to-one match between agents & items
- Key Measure of Interest
 - Agent Welfare: Expected average utility across agents

Information Regimes

Preview of Results

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{q} have Pareto tail with parameters (κ , α). Then we have that

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ , α). Then we have that

Capacitated Supply Setting

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have Pareto tail with parameters (κ , α). Then we have that

Capacitated Supply Setting

 $\Delta^{\operatorname{cap}}_{\emptyset o q} = 0$

•
$$\Delta_{\phi \to q}^{\mathrm{uncap}} \simeq c \rho \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{q} have Pareto tail with parameters (κ , α). Then we have that

Capacitated Supply Setting

- $\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$
- $\Delta_{q \to u}^{\operatorname{cap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$

uncap 1/a

•
$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c((\rho^{\alpha} + (1-\rho)^{\alpha})^{\frac{1}{\alpha}} - \rho) \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{arphi} have Pareto tail with parameters ($\kappa, lpha$). Then we have that

- $\Delta_{\phi \to q}^{\operatorname{cap}} = 0$
- $\Delta_{q \to u}^{\operatorname{cap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$

•
$$\Delta^{\mathrm{uncap}}_{\phi o q} \simeq c \rho \cdot n^{1/\alpha}$$

$$\Delta_{q \to u}^{\text{uncap}} \simeq c((\rho^{\alpha} + (1 - \rho)^{\alpha})^{\frac{1}{\alpha}} - \rho) \cdot n^{1/\alpha}$$

A distribution F is said to have a Pareto tail with parameter (κ, α) if $\lim_{x\to\infty} \overline{F}(x)/(\kappa/x)^{\alpha} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{arphi} have Pareto tail with parameters ($\kappa, lpha$). Then we have that

- $\Delta_{\phi \to q}^{\operatorname{cap}} = 0$
- $\Delta_{q \to u}^{\operatorname{cap}} \simeq c(1-\rho) \cdot n^{1/\alpha}$

•
$$\Delta_{\phi o q}^{\mathrm{uncap}} \simeq c \rho \cdot n^{1/\alpha}$$

•
$$\Delta_{q \to u}^{\mathrm{uncap}} \simeq c((\rho^{\alpha} + (1-\rho)^{\alpha})^{\frac{1}{\alpha}} - \rho) \cdot n^{1/\alpha}$$

Corollary (Exponential Tail)

A distribution F is said to have a exponential tail with parameter λ if $\lim_{x\to\infty} \overline{F}(x)/e^{-\lambda x} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have exponential tail with parameter λ . Then we have that

Capacitated Supply Setting

- $\Delta^{\operatorname{cap}}_{\emptyset o q} = 0$
 - $\Delta_{a \to u}^{\operatorname{cap}} \simeq (1 \rho) \cdot (\ln n / \lambda)$

•
$$\Delta_{\phi \to q}^{\mathrm{uncap}} \simeq \rho \cdot (\ln n / \lambda)$$

•
$$\Delta_{q \to u}^{\text{uncap}} \simeq \max\{0, 1 - 2\rho\} \cdot (\ln n / \lambda)$$

Corollary (Exponential Tail)

A distribution F is said to have a exponential tail with parameter λ if $\lim_{x\to\infty} \overline{F}(x)/e^{-\lambda x} = 1$.

We have n agents and n items. Assume that common term distribution F_q and the idiosyncratic term distribution F_{φ} have exponential tail with parameter λ . Then we have that

Capacitated Supply Setting

- $\Delta_{\emptyset \to q}^{\operatorname{cap}} = 0$
 - $\Lambda^{\rm cap} \simeq (1 o) \cdot (\ln n / \lambda)$

•
$$\Delta_{\emptyset \to q}^{\mathrm{uncap}} \simeq \rho \cdot (\ln n / \lambda)$$

•
$$\Delta_{q \to u}^{\text{uncap}} \simeq \max\{0, 1 - 2\rho\} \cdot (\ln n / \lambda)$$

Summary

- Study the impact of two information provisioning tools
 - Public Rankings: Provide an overall assessment of the options
 - Personalized Recos: Helps discover agent-item specific adjustments
- Analyze a stylized model to isolate the impact of these tools
- Identify a fundamental interplay between the value of these information provisioning tools and supply-side constraints

So long and Thanks for all the fish