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But rankings aren’t personalized…

Many platforms (aim to) provide personalized recos to each user

There is no supply-side constraints on these platforms



Personalized Recos underexplored 
in supply constrained settings



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions

Students take one/multiple 
exams



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions

Students take one/multiple 
exams

Students get a priority order based 
on the exam performance



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions

Students take one/multiple 
exams

Students get a priority order based 
on the exam performance

Students are sequentially invited to 
choose their college



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions

Students take one/multiple 
exams

Students get a priority order based 
on the exam performance

Students are sequentially invited to 
choose their college

Students are making these choices with partial information such as rankings



Personalized Recos underexplored 
in supply constrained settings
One important setting is Centralized College Admissions

Students take one/multiple 
exams

Students get a priority order based 
on the exam performance

Students are sequentially invited to 
choose their college

This is also applicable* to online platforms like AirBnB, Upwork, etc.

*the priority order is some random order

Students are making these choices with partial information such as rankings
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Recommender Systems for 
College Recommendations

Chatbots for Course 
Recommendations

Personal Recommendation Tools



Research Problem

How much value do different information levers -
rankings & personalized recommendations - 

provide with & without supply side constraints?
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Preview of Results
• Study the impact of two information provisioning tools

• Public Rankings: Provide an overall assessment of the options
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information provisioning tools and supply-side constraints 
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We have 𝑛 agents and 𝑛 items. Assume that common term distribution 𝐹% and the 
idiosyncratic term distribution 𝐹& 	have Pareto tail with parameters (𝜅, α). Then we have that 

Capacitated Supply Setting

• ∆∅→%
()* = 0

• ∆%→/
()* ≃ 𝑐(1 − 𝜌) 6 𝑛-/$

Uncapacitated Supply Setting

• ∆∅→%
+,()*≃ 𝑐𝜌 6 𝑛-/$

• ∆%→/
+,()*≃ 𝑐( 𝜌$ + (1 − 𝜌)$

!
" − 𝜌) 6 𝑛-/$
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Main Result (Pareto Tail)

Full InfoNo Info Partial Info

Public Rankings Personalized Recos

Large
benefit

marginal
benefit

A distribution 𝐹 is said to have a Pareto tail with parameter (𝜅, α) if lim!→# *𝐹(𝑥)/(𝜅/𝑥)$ = 1. 

We have 𝑛 agents and 𝑛 items. Assume that common term distribution 𝐹% and the 
idiosyncratic term distribution 𝐹& 	have Pareto tail with parameters (𝜅, α). Then we have that 

Capacitated Supply Setting

• ∆∅→%
()* = 0

• ∆%→/
()* ≃ 𝑐(1 − 𝜌) 6 𝑛-/$

Uncapacitated Supply Setting

• ∆∅→%
+,()*≃ 𝑐𝜌 6 𝑛-/$

• ∆%→/
+,()*≃ 𝑐( 𝜌$ + (1 − 𝜌)$

!
" − 𝜌) 6 𝑛-/$
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Corollary (Exponential Tail)

Full InfoNo Info Partial Info

Public Rankings Personalized Recos

No Info Partial Info

Public Rankings Personalized Recos

little to no

benefit
Large
benefit

Full Info

Large
benefit benefit

A distribution 𝐹 is said to have a exponential tail with parameter 𝜆 if lim!→# *𝐹(𝑥)/𝑒01! = 1. 

We have 𝑛 agents and 𝑛 items. Assume that common term distribution 𝐹% and the 
idiosyncratic term distribution 𝐹& 	have exponential tail with parameter 𝜆. Then we have that 

Capacitated Supply Setting

• ∆∅→%
()* = 0

• ∆%→/
()* ≃ (1 − 𝜌) 6 (ln 𝑛 /𝜆)

Uncapacitated Supply Setting

• ∆∅→%
+,()*≃ 𝜌 6 (ln 𝑛 /𝜆)

• ∆%→/
+,()*≃	max{0,1 − 2𝜌} 6 (ln 𝑛 /𝜆)
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little to no



Corollary (Exponential Tail)

Full InfoNo Info Partial Info

Public Rankings Personalized Recos

Large
benefit benefit

A distribution 𝐹 is said to have a exponential tail with parameter 𝜆 if lim!→# *𝐹(𝑥)/𝑒01! = 1. 

We have 𝑛 agents and 𝑛 items. Assume that common term distribution 𝐹% and the 
idiosyncratic term distribution 𝐹& 	have exponential tail with parameter 𝜆. Then we have that 

Capacitated Supply Setting

• ∆∅→%
()* = 0

• ∆%→/
()* ≃ (1 − 𝜌) 6 (ln 𝑛 /𝜆)

Uncapacitated Supply Setting

• ∆∅→%
+,()*≃ 𝜌 6 (ln 𝑛 /𝜆)

• ∆%→/
+,()*≃	max{0,1 − 2𝜌} 6 (ln 𝑛 /𝜆)
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little to no



Summary
• Study the impact of two information provisioning tools

• Public Rankings: Provide an overall assessment of the options
• Personalized Recos: Helps discover agent-item specific adjustments

• Analyze a stylized model to isolate the impact of these tools

• Identify a fundamental interplay between the value of these 
information provisioning tools and supply-side constraints 

Full InfoNo Info Partial Info

Without Supply Constraints

Public Rankings Personalized Recos

No Info Partial Info

With Supply Constraints

Public Rankings Personalized Recos

little to no

benefit
Large
benefit

Full Info

Large
benefit

marginal
benefit
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So long and Thanks for all the fish


