Feature Based Dynamic Matching

Yilun Chen CUHK Shenzhen Yash Kanoria

Columbia Business School

Akshit Kumar

Columbia Business School

Wenxin Zhang Columbia Business School

In a Nutshell

We study dynamic centralized matching in two-sided markets with heterogeneous supply and demand

Motivated by applications we assume a spatial structure on the demand and supply type space and resulting matching utility

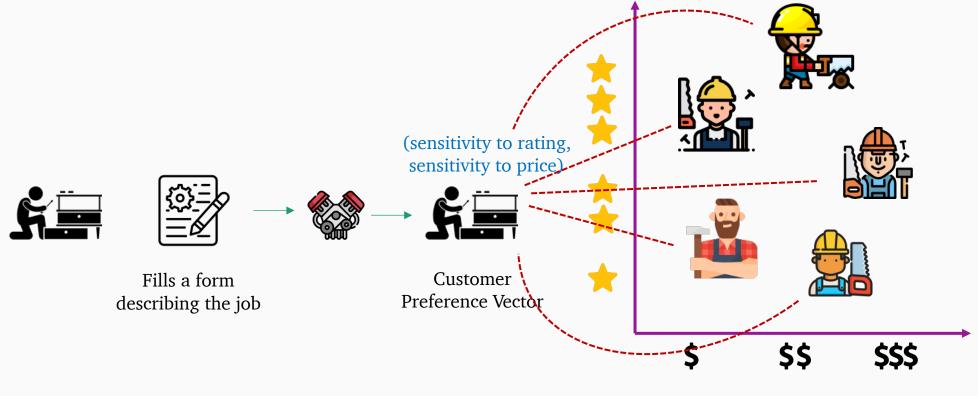
Myopic policies are highly suboptimal

We design a simple, practical, near-optimal policy SOAR Simulate, Optimize, Assign & Repeat

Two-sided platforms

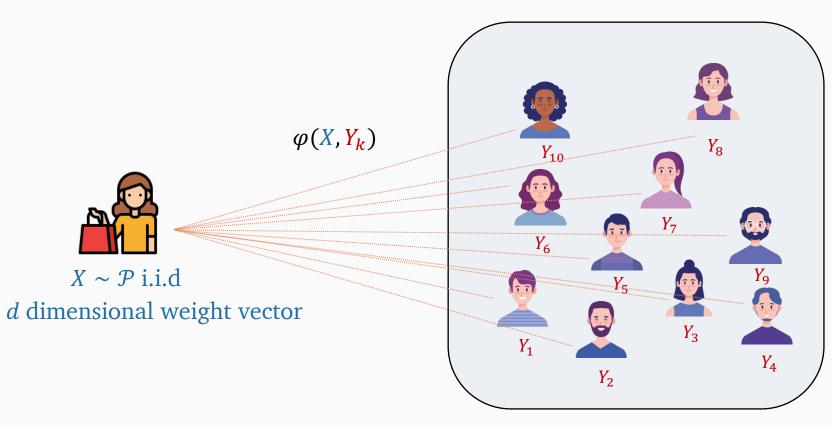
Two-sided platforms

Operations



Heterogeneous Pool of Service Providers

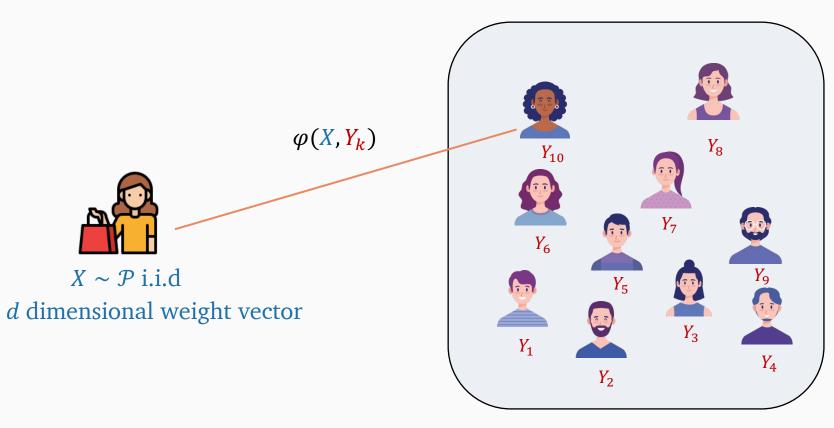
Model



n service providers *d* dimensional feature vector

 \mathcal{P} known to the platform access to historical demand data dot product utility $\varphi(X, Y) = \langle X, Y \rangle$

Model



n **n servivicp**r**prodiders** *d* dimensional feature vector \mathcal{P} known to the platform access to historical demand data

dot product utility $\varphi(X, Y) = \langle X, Y \rangle$

Related Literature

Dynamic two-sided matching and resource allocation with few types Talluri & van Ryzin (2006), Vera & Banerjee (2021), Banerjee, Freund & Lykouris (2022)

Online Stochastic Matching with many supply types Manshadi, Gharan & Saberi (2012) Static Spatial Matching and Empirical Optimal Transport

Ajtai, Komlos & Tusnady (1984), Talagrand (1992,1994), Shor (1986, 1991), Ledoux (2019), Manole & Niles-Weed (2021) Dynamic Spatial Matching with identical supply and demand distributions

Gupta, Guruganesh, Peng & Wajc (2019), Akbarpour, Alimohammad, Li & Saberi (2022), Kanoria (2022) Stochastic Assignment Problems with different supply & demand dists.

Derman, Lieberman & Ross (1972), Su & Zenios (2005), Goldenshluger, Malinovsky & Zeevi (2020)

infinitely many types spatial structure on type

dynamic demand arrivals different supply & demand distribution

high dimensional features

Performance Metric

- We aim to maximize the expected average match value $\frac{1}{n} \sum_{k=1}^{n} \langle X_k, Y_{\pi(k)} \rangle$
- Fluid benchmark is the value of the optimal transport between the demand distribution and the supply distribution
- We aim to minimize the additive regret wrt to the fluid benchmark. We want o(1) regret

• Problem is equivalent to minimizing $\frac{1}{n}\sum_{k=1}^{n}||X_k - Y_{\pi(k)}||^2$

Fundamental Limits

 \mathcal{P} known demand distribution

n supply units drawn i.i.d from Qdot product utility $\varphi(X, Y) = \langle X, Y \rangle$

	₽, <mark>2</mark> regular	Р , Q arbitrary
Lower Bound (per match regret)	$\widetilde{\Omega} \; (n^{-(\frac{2}{d} \wedge 1)})$	$\widetilde{\Omega} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$

 $(NND)^2$ is a lower bound on regret and $NND \sim n^{-1/d}$

d = 1 matching constraints leads to a tighter lower bound

for arbitrary distributions, a simple example implies that $1/\sqrt{n}$ is a lower bound $1/\sqrt{n} \gg (NND)^2$ for $d \le 3$

What algorithms can achieve these fundamental limits?

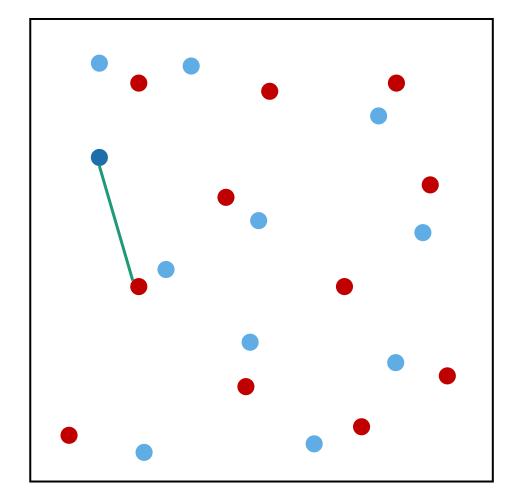
Greedy: The Good, The Bad & The Ugly



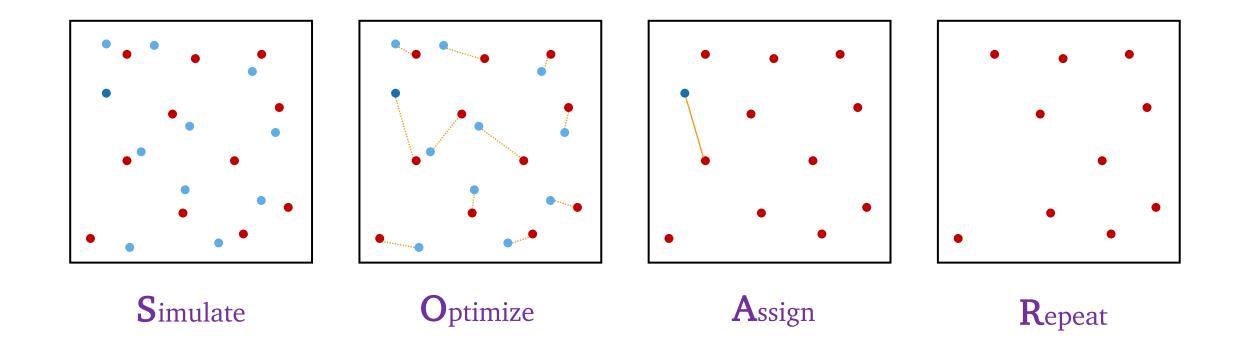
Greedy: The Good, The Bad & The Ugly

SOAR: future-aware algorithm

Simulate Optimize Assign Repeat



SOAR: future-aware algorithm



Fundamental Limits

 \mathcal{P} known demand distribution

n supply units drawn i.i.d from Qdot product utility $\varphi(X, Y) = \langle X, Y \rangle$

	\mathcal{P} , \mathcal{Q} regular	Р, <mark>Q</mark> arbitrary
Lower Bound (per match regret)	$\widetilde{\Omega} \; (n^{-(\frac{2}{d} \wedge 1)})$	$\widetilde{\Omega} \left(n^{-(\frac{2}{d} \wedge \frac{1}{2})} \right)$

 $(NND)^2$ is a lower bound on regret and $NND \sim n^{-1/d}$

d = 1 matching constraints leads to a tighter lower bound

for arbitrary distributions, a simple example implies that $1/\sqrt{n}$ is a lower bound $1/\sqrt{n} \gg (NND)^2$ for $d \le 3$

SOAR is provably near optimal

 \mathcal{P} known demand distribution

n supply units drawn i.i.d from Qdot product utility $\varphi(X, Y) = \langle X, Y \rangle$

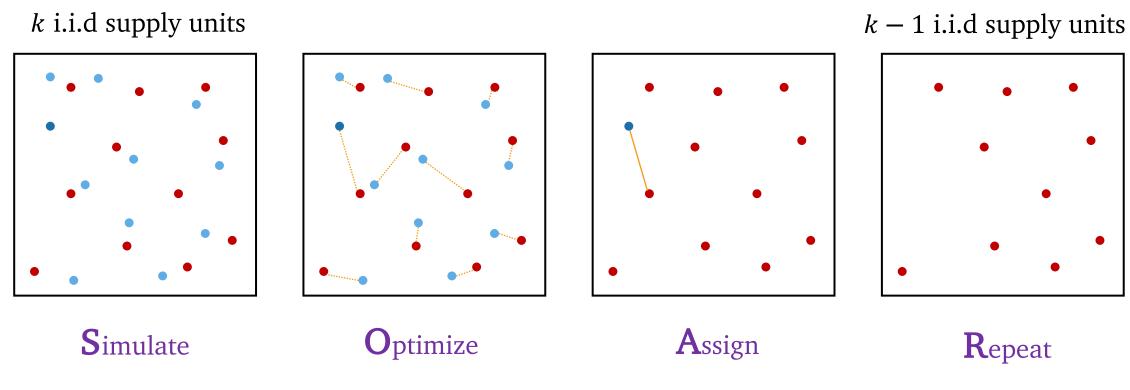
	\mathcal{P} , \mathcal{Q} regular	Р , Q arbitrary
Lower Bound (per match regret)	$\widetilde{\Omega} (n^{-(\frac{2}{d} \wedge 1)})$	$\widetilde{\Omega} (n^{-(\frac{2}{d} \wedge \frac{1}{2})})$
SOAR	$\tilde{\mathcal{O}}(n^{-(\frac{2}{d}\wedge 1)})$	$\tilde{\mathcal{O}}(n^{-(\frac{2}{d}\wedge\frac{1}{2})})$

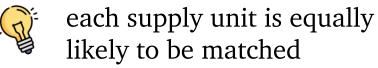
 $(NND)^2$ is a lower bound on regret and $NND \sim n^{-1/d}$

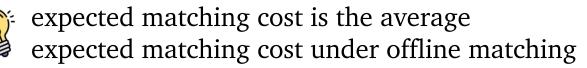
d = 1 matching constraints leads to a tighter lower bound

for arbitrary distributions, a simple example implies that $1/\sqrt{n}$ is a lower bound $1/\sqrt{n} \gg (NND)^2$ for $d \le 3$

Key Technical Ideas







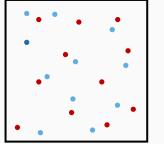
Summary

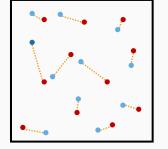
Repeat

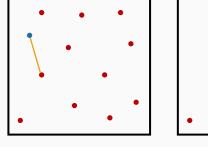
We study dynamic centralized matching in two-sided markets with heterogeneous supply and demand

Greedy policy suffers from non-vanishing regret

SOAR is a simple, practical and near-optimal policy







Simulate

Optimize

Assign

