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In a Nutshell
We study dynamic centralized matching in two-sided markets with 
heterogeneous supply and demand

Myopic policies are highly suboptimal

We design a simple, practical, near-optimal policy SOAR
Simulate, Optimize, Assign & Repeat

Motivated by applications we assume a spatial structure on the 
demand and supply type space and resulting matching utility



Two-sided platforms



Two-sided platforms



Operations

Heterogeneous
Pool of Service Providers

Fills a form 
describing the job

Customer 
Preference Vector

(sensitivity to rating, 
sensitivity to price)



Model
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dot product utility 𝜑 𝑋, 𝑌 = 𝑋, 𝑌

access to historical demand data
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Performance Metric

• We aim to maximize the expected average match value !
"
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• Fluid benchmark is the value of the optimal transport between the demand distribution 

and the supply distribution

• We aim to minimize the additive regret wrt to the fluid benchmark. We want o(1)	regret

• Problem is equivalent to minimizing !
"
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Fundamental Limits
𝒫 known demand distribution
𝑛 supply units drawn i.i.d from 𝒬
dot product utility 𝜑 𝑋, 𝑌 = 𝑋, 𝑌

𝒫, 𝒬 regular 𝒫, 𝒬 arbitrary

Lower Bound (per match regret) 0Ω (𝑛)(
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𝑁𝑁𝐷 " is a lower bound on regret and 𝑁𝑁𝐷 ∼ 𝑛#$/&

𝑑 = 1	matching constraints leads to a tighter lower bound

for arbitrary distributions, a simple example implies that ⁄1 𝑛 is a lower bound ⁄1 𝑛 ≫ (𝑁𝑁𝐷)! for 𝑑 ≤ 3



What algorithms can achieve 
these fundamental limits?

Greedy?



Greedy: The Good, The Bad & The Ugly
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Greedy suffers from non-
vanishing regret

Greedy is not future aware
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SOAR: future-aware algorithm

Simulate
Optimize
Assign
Repeat



SOAR: future-aware algorithm

Simulate Optimize Assign Repeat
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SOAR is provably near optimal
𝒫 known demand distribution
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Key Technical Ideas

Simulate Optimize Assign Repeat

𝑘 i.i.d supply units 𝑘 − 1 i.i.d supply units

each supply unit is equally 
likely to be matched

expected matching cost is the average 
expected matching cost under offline matching
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We study dynamic centralized matching in two-sided 
markets with heterogeneous supply and demand

Greedy policy suffers from non-vanishing regret

SOAR is a simple, practical and near-optimal policy
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