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Dynamic Resource Allocation is 
ubiquitous

Order Fulfillment

Budget Management in Ad auctions

Network Revenue Management

Sierra 
Nevada



A few 
types are present

Bayes Selector
Vera and Banerjee 2021

Budget Ratio
Arlotto and Gurvich 2019

Infrequent Resolving with 
Thresholding
Bumpensanti and Wang 2020

In A Nutshell     

All types are 
present

Certainty Equivalent or Bid 
Price Control
Lueker 1998 and Bray 2022

Repeatedly Act using Multiple Simulations
Regret is the additive gap between the value of hindsight optimal problem and value of problem under some algorithm

Multi-secretary Multi-secretary

General distributions

𝛽 −clustered distributions

Reg = 	 &Θ 𝑇
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Reg = Θ 1

Reg = Θ(log	𝑇)



Multi-secretary problem

• Given a sequence of 𝑇 secretaries and hiring budget 𝐵, a decision maker
wants to hire the top 𝐵 secretaries in terms of their ability.
• The secretaries arrive in an online fashion.
• The decision maker makes irrevocable hire or reject decisions.
• Assumption: The abilities (types) of the secretaries are drawn 

independently from a common and known distribution 𝐹.



Multi-Pokémon Problem
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Spectrum of Achievable 
Performances

Rarity of types (Shape of the distribution)

No Gaps

Gaps

...
𝛽 = 0 𝛽 = 1 𝛽 = 2

Θ(log	𝑇) Θ(𝑇 !" #) Θ(𝑇 !" $)
hardness increases

Regret(Certainty Equivalent) = Ω( 𝑇)

Distribution shape is fundamental 
driver of performance

Dealing with gaps is an algorithmic 
challenge

Conservativeness with respect to 
Gaps (CwG) principle enables near 
optimal performance

Use RAMS (Repeatedly Act using 
Multiple Scenarios) to operationalize 
CwG

Θ(log%	𝑇) .Θ	(𝑇 !" #) .Θ	(𝑇 !" $)



Certainty Equivalent

0 1
Budget	Ratio = !"#$%&%&'	)*+'",

!"#$%&%&'	-%#"

Regret(CE) = Θ(log	𝑇)

Lueker 1998 and Bray 2019

(optimal regret scaling)

Uniform distribution (when all types are present)

acceptreject



Certainty Equivalent

0 1
Budget	Ratio = !"#$%&%&'	)*+'",

!"#$%&%&'	-%#"

Regret(CE) = Θ(log	𝑇)

Lueker 1998 and Bray 2019

(optimal regret scaling)

Uniform distribution (when all types are present)

Regret(CE) = Ω( 𝑇)
(highly sub-optimal regret scaling)

Bi-modal Uniform distribution (some types are absent)

acceptreject



Failure of Certainty Equivalent

0 1

Budget	Ratio =
1
2
+ δCE

1
remaining	time

HS

CE and HS disagree ⇒ mistake

𝔼 cost	of	mistake ∼ ℙ 	 ∈ CE, HS ×| 	 − HS	|
                              ∼ ⁄1 remaining	timecompensation
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CE and HS disagree ⇒ mistake
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CwG: Hedging against the risk of 
large regret in the future

0 1

Budget	Ratio =
1
2
+ δ

CE CwG

Conservativeness with respect to gaps principle
If the CE threshold is close to the gap, use the gap as the threshold. 
Otherwise use the CE threshold.
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CwG: Hedging against the risk of 
large regret in the future

0 1

Budget	Ratio =
1
2
+ δ

CE HSCwG

CwG and HS agree ⇒ no compensation required



CwG: Hedging against the risk of 
large regret in the future

0 1

Budget	Ratio =
1
2
+ δ

CE CwG

CwG and HS disagree, but expected cost of mistake∼ E
FGHIJKJKL	MJHG

 

HS



CwG via multiple simulations

0 1
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1
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CE Remaining Budget	 = 5
Remaining Time = 9

5𝐻𝑆!



CwG via multiple simulations
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CwG via multiple simulations
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CwG via multiple simulations

0 1

Budget	Ratio =
1
2
+ δ

CE CwG

5𝐻𝑆! 5𝐻𝑆"5𝐻𝑆'

Remaining Budget	 = 5
Remaining Time = 9

same action under the CwG policy and using the 
average of the simulated HS thresholds

Average of HS 
thresholds



CwG via multiple simulations

0 1

Budget	Ratio =
1
2
+ δ

CE CwG

5𝐻𝑆! 5𝐻𝑆"5𝐻𝑆'

Remaining Budget	 = 5
Remaining Time = 9

Average of HS 
thresholds

Connection to “dual averaging” policy of Talluri and van Ryzin (1998)
think of the different HS thresholds as the shadow prices of the budget for 
different scenarios, the bid price is computed by averaging the HS thresholds



Repeatedly Act using Multiple 
Simulations (RAMS)

current budget 𝐵.

observe request 𝜃. = (𝑟., 𝑐.)

feasible set of actions 𝐴.
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Take the action which maximizes the average total reward over the multiple simulated scenarios



Repeatedly Act using Multiple 
Simulations (RAMS)

current budget 𝐵./0

observe request 𝜃./0 = (𝑟./0, 𝑐./0)

feasible set of actions 𝐴./0

𝜃89: .𝜃89<: …. .𝜃;: 𝜃89: .𝜃89<< …. .𝜃;< 𝜃89: .𝜃89<= …. .𝜃;=….

Scenario 1 Scenario 𝑚

For each simulated scenario, compute the maximum total reward for each feasible current action at time 𝑡

Take the action which maximizes the average total reward over the multiple simulated scenarios



RAMS minimizes hindsight-
based regret

Given an dynamic resource allocation setting, if there exists an algorithm 
ALG satisfying certain technical conditions, then

Regret(RAMS) ≤ Regret Upper Bound of ALG + Sampling Error

Informal Meta Theorem.

Corollary of the Meta Theorem
• bounded regret for NRM and online matching for a few types (Vera and Banerjee ‘21)
• logarithmic regret for NRM for many types with non-degeneracy assumption (Bray ‘22)
• log-squared regret for NRM for many types without non-degeneracy assumption (Jiang et. al ‘22)



Numerical Performance of RAMS
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Multi-secretary Problem for the 
bimodal uniform distribution

NRM problem with two resources 
and a few types present



A few types are 
present

Bayes Selector
Vera and Banerjee 2021

Budget Ratio
Arlotto and Gurvich 2019

Infrequent Resolving with 
Thresholding
Bumpensanti and Wang 2020

One policy to solve them all and 
with a simulator we bind them

All types are 
present

Certainty Equivalent or Bid 
Price Control
Lueker 1998 and Bray 2022

Repeatedly Act using Multiple Simulations
Regret is with respect to the hindsight optimal problem

Multi-secretary Multi-secretary

General distributions

𝛽, 𝜀! −clustered distributions
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Reg = Θ(log	𝑛)



arxiv.org/abs/2205.09078

Thanks!


