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Claude Computer Use Demo (April’25)



Our Initial Prototype (June’25)



ChatGPT Atlas Demo (October’25)
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• Do these agents satisfy basic instruction 
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Our Findings
• Do these agents satisfy basic instruction 

following and simple economic rationality?

• Product market shares when purchases are 
fully AI-mediated?

• Choice behavior of agents given product 
attributes and platform levers (position, tags)?

• How might sellers respond by optimizing their 
listings using their own agents?
In 25% of seller attempts, significant uptick in 
market share with small change in product title

Older models show non-trivial failure rates; 
newer models succeed with flying colors

Different modal products for different models; 
risk of concentration on select products
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Agentic e-CommercE Simulator

Vision Language 
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AI Agent Programmable Mock e-Commerce Platform
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Veni, Vidi, Emi: Agentic Workflow



Caveats:

• Do not capture the full shopping journey

• Does not read product reviews

• Does not circle back and forth between products

• No scrolling and checking multiples pages

• The AI Agent declares “intent” instead of “clicking” on the product.

• No personalization (using RAG or fine-tuning)

Veni, Vidi, Emi: Agentic Workflow



Models studied

Main Focus:

• Claude Sonnet 4 (Anthropic)

• GPT-4.1 (OpenAI)

• Gemini 2.5 Flash (Google)

Earlier versions (like Claude 3.5/3.7, GPT-4o, Gemini 2.0) were 

included, e.g., in our initial rationality tests to show how 

performance has evolved.
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Instruction Following Tasks

Choose a product of a specific color (pink in this case)



Price-Based Rationality Test

Price of one listing reduced by 10% 



Price-Based Rationality Test

Random Prices (Low Variance)



Price-Based Rationality Test

Random Prices (High Variance)



Rating-Based Rationality Test

Rating of one listing increased by +0.1
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Our Findings
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Results for (Economic) Rationality

Rating of one listing 
increased by 0.1

Random Ratings
(Low Variance)

Random Ratings 
(High Variance)

Claude Sonnet 3.5 57.3% (1.5%) 16.3%   (0.8%) 2.7% (0.2%)

Claude Sonnet 3.7 6.7%   (0.5%) 0.0% 0.0%

Claude Sonnet 4 28.7% (1.2%) 9.4%   (0.6%) 4.7% (0.3%)

GPT-4o 71.7% (0.9%) 16.0% (0.5%) 7.3% (0.4%)

GPT-4.1 15.1% (0.6%) 11.7% (0.5%) 6.0% (0.4%)

Gemini 2.0 Flash 0.0% 0.0% 0.3% (0.1%)

Gemini 2.5 Flash 0.0% 0.0% 0.0%     

Failure Rate for Rating-based Rationality Tests
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• Customers may not necessarily get the cheapest or highest quality product.

• Sellers may not necessarily "win” by cutting prices/offering higher quality product.

• As variation in prices/rating increases, model performance improves
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Understanding Trade-offs

Ind. Variable Exogeneous Variation
Position Randomly permute the position of the eight product listings

Sponsored Tag Randomly assign to 𝑋	listings, 𝑋 ∼ Unif({1, . . , 4})

Overall Pick Tag Randomly assign to a product without a Sponsored Tag

Scarcity Tag Randomly assign to a product without Sponsored or Overall Pick Tag

Price Randomly perturb the original price 𝑝! for product 𝑗,
𝑝!" ← 𝑝! 3 	𝑓!, 𝑓! ∼ logNormal(𝜇 = 0, 𝜎 = 0.3)

Rating Randomly perturb the original rating 𝑟! for product 𝑗,
𝑟!" ← 𝑟! +	𝛼! 5 − 𝑟! , 	 𝛼! ∼ Unif([−0.8, 0.8])

Num of Reviews Randomly perturb the original number of reviews 𝑁! for product 𝑗,
𝑁!" ← 𝑁! 3 	𝑓!, 𝑓! ∼ logNormal(𝜇 = 0, 𝜎 = 1)



Exogenous Variation (Stapler)



Exogenous Variation



Our Findings
• Do these agents satisfy basic instruction 

following and simple economic rationality?

• Product market shares when purchases are 
fully AI-mediated?

• Choice behavior of agents given product 
attributes and platform levers (position, tags)?

• How might these outcomes change when 
seller optimize listing using their own agents?

Older models show non-trivial failure rates; 
newer models succeed with flying colors

Different modal products for different models; 
risk of concentration on select products

All prefer the top row; heterogeneity across 
columns; other attributes directionally same
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Choice Behavior

Claude Sonnet 4 GPT-4.1 Gemini 2.5 Flash

Row 1 1.224*** (0.046) 1.045*** (0.046) 0.344***  (0.041)

Column 1 -0.297*** (0.065) 1.222*** (0.061) -0.264*** (0.057)

Column 2 0.557*** (0.058) 0.019     (0.065) -0.742*** (0.061)

Column 3 0.416*** (0.059) -0.013     (0.066) 0.162**   (0.054)

Sponsored Tag -0.135*   (0.068) -0.248*** (0.072) -0.263*** (0.067)

Overall Pick Tag 1.060*** (0.077) 0.802*** (0.083) 1.897***  (0.072)

Scarcity Tag -0.076    (0.094) -0.105     (0.099) -0.342*** (0.098)

Price -1.623*** (0.079) -1.612*** (0.083) -2.190*** (0.080)

Rating 4.913*** (0.218) 8.300*** (0.269) 5.388***  (0.218)

Num. of Reviews 0.415*** (0.023) 0.739*** (0.026) 0.501***  (0.023)

𝑈!" = 𝛽#$%, 𝑥!" +'
&'(

𝛽&'( 1 tag!" = 1 +	 '
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Significance is indicated as: *𝑝	 < 	0.05, **𝑝 < 0.01, ***𝑝 < 0.001	



Models exhibit varying position bias

• Position matters. A lot.

• Traditional platform monetization levers like product rankings are not 

uniformly applicable to different AI models

Estimated position “market shares” under identical products
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Price-equivalent trade-offs



Replication of Experiments and Ability 
to Steer the Agent through Prompts



Adj Prompt (Ignore Position)



Adj Prompt (Position + price)



No significant change in 
coefficients ⟹ model 

behavior is (somewhat) 
stable across time



Prompting attenuates 
but does not remove 

position bias





Further 
attenuation 
in position 
bias



Further 
attenuation 
in position 
bias

Price 
coefficient 
becomes 
steeper



Model updates as demand shocks

• During our research, Google updated its model from Gemini 2.5 

Flash Preview to the final Gemini 2.5 Flash release.

• This gave us a natural experiment: What happens when the 

underlying "brain" of an AI agent is upgraded?

• We re-ran our experiments to measure how this upstream change 

propagated to AI-mediated demand.



Model updates as demand shocks
• Even a minor version change can act as a major demand shock.

• Market shares shift dramatically. 

Office Lamps
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Model updates as demand shocks

• Positional Biases Change: Gemini 2.5 Flash’s "heatmap" of 

attention was different from the Preview version. The latter had a 

negative top-row bias, while the final release has a positive one.

• Implication of changes in market shares and position biases: 

Sellers and platforms cannot "set and forget." Content tuned for 

yesterday's model may underperform after an upgrade.
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Our Findings
• Do these agents satisfy basic instruction 

following and simple economic rationality?

• Product market shares when purchases are 
fully AI-mediated?

• Choice behavior of agents given product 
attributes and platform levers (position, tags)?

• How might sellers respond by optimizing their 
listings using their own agents?

Older models show non-trivial failure rates; 
newer models succeed with flying colors

Different modal products for different models; 
risk of concentration on select products

In 25% of the tested cases, large uptick in 
market share with mild changes in product title



Seller Response Experiments

What if sellers use AI to optimize their listings for AI buyers?

• We designated one item in each category as the "focal product"

• We then prompted a "seller AI" (GPT-4.1) to suggest an alternate 

description for that product, based on its features and 

competitor sales data.

• Finally, we re-ran our experiments with the new description to 

measure the causal impact on market share.



Seller Response Experiments
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Seller Response Experiments

AI-generated descriptions led to 
positive gains on average:

25% of AI generated listing 
descriptions showed statistically 
significant gains. Suggests 
opportunity for AI SEO. 

Buyer AI Model Average gain in 
market share

Claude Sonnet 4 +2.7% (1.3%)

GPT 4.1 +5.6% (1.3%)

Gemini 2.5 Flash +4.8% (1.4%)



Research Questions
• Do these agents satisfy basic instruction 

following and simple economic rationality?

• Product market shares when purchases are 
fully AI-mediated?

• Choice behavior of agents given product 
attributes and platform levers (position, tags)?

• How might sellers respond by optimizing their 
listings using their own agents?

Behavior across p
rotocols?



Headless AI Shopping Agents
We run experiments where AI shopping agents are provided with a 
dictionary (JSON object) of product attributes in rank list fashion

You are helping a customer choose the best mousepad from the following product options.
Here are the products as a JSON array:
[
{
"product_number": 1,
"title": "KTRIO Large Gaming Mouse Pad with Superior Micro-Weave Cloth, Extended Desk Mousepad with 

Stitched Edges, Non-Slip Base, Water Resist
Keyboard Pad for Gamer, Office & Home, 31.5 x 11.8 in, Black",

"price": 13.97,
"rating": 4.7,
"number_of_reviews": 38896,
"sponsored": true,
"overall_pick_tag": false,
"scarcity_tag": false

},
……

{
"product_number": n,
"title": "MROCO Ergonomic Mouse Pad with Gel Wrist Rest, Comfortable Mousepad with Smooth Wrist 

Support Surface and Non-Slip PU Base for Pain
Relief, Computer, Laptop, Office & Home, 9.4 x 8.1 in, Black Color",

"price": 8.49,
"rating": 4.6,
"number_of_reviews": 29052,
"sponsored": false,
"overall_pick_tag": true,
"scarcity_tag": false

}
]

Please analyze these products and select the ONE best option for a typical customer looking for a mousepad. 
Consider factors like value for money, customer satisfaction (rating + review count), overall quality, and 
any special tags or offers.



Choice Behavior for API Style Agents
Claude Sonnet 4 GPT-4.1 Gemini 2.5 Flash

Position 1 2.010*** (0.106) 1.078***(0.090) 0.394   (0.204)

Position 2 1.370*** (0.107) 0.125    (0.095) 0.256   (0.209)

Position 3 1.357*** (0.108) 0.312*** (0.094) 0.677***(0.203)

Position 4 1.024*** (0.109) -0.140.    (0.097) -0.373    (0.216)

Position 5 0.857*** (0.111) 0.319*** (0.094) -0.156     (0.218)

Position 6 0.677*** (0.111) 0.184      (0.094) -0.220    (0.213)

Position 7 0.252*     (0.115) -0.155    (0.097) -0.087     (0.214)

Sponsored Tag -0.673***(0.083) -1.815*** (0.092) -0.124     (0.167)

Overall Pick Tag 2.538*** (0.093) 2.421***  (0.086) 3.175*** (0.205)

Scarcity Tag -0.674***(0.121) -0.383*** (0.108) -0.650*    (0.264)

ln(Price) -2.575***(0.099) -2.371*** (0.092) -2.517*** (0.214)

ln(Rating Count) 0.800*** (0.030) 0.944***  (0.030) 0.814***  (0.064)

Rating 9.701*** (0.314) 11.373*** (0.316) 5.673***  (0.537)
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Significance is indicated as: *𝑝	 < 	0.05, **𝑝 < 0.01, ***𝑝 < 0.001	



Models continue to exhibit heterogenous 
position bias in Headless interactions

Estimated position “market shares” under identical products
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Implications for the Ecosystem
• Platforms: Traditional ads may lose value, while new services (like 

”GEO-as-a-service") could emerge/MCP-like interface for AI shoppers 

to counteract position biases? Unclear given our headless 

experiments…/new role as ``seller’’

• Sellers: Risk of being invisible to agents/Need for cont. monitoring and 

potential for GEO with listings continuously tuned for different AI 

buyers via automated pipeline for simulation-based optimization

• Consumers: AI agents will reduce search friction, but risk sub-optimal 

and homogeneous choices

• Regulators: Concerns include market concentration, and the need for 

standardized reporting of agent testing beyond traditional failure rates 

on processes…



Concluding Remarks
• High level questions:

• How will AI agents reshape the e-commerce ecosystem in the next 

5 years?

• Who will ``own’’ the agents?

• Research Questions:

• How to optimize agents’ interactions/communication?

• How will agents compete? Unintended consequences?

• Behavioral economics for AI agents? And associated implications for 

operational decisions?
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